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ABSTRACT

Numerous tools and techniques have been developed to extract

and analyze information from software development artifacts. Yet,

there is a lack of effective method to process, store, and exchange

information among different analyses. In this paper, we propose

differential factbase, a uniform exchangeable representation sup-

porting efficient querying and manipulation, based on the existing

concept of program facts. We consider program changes as first-

class objects, which establish links between intra-version facts of

single program snapshots and provide insights on how certain arti-

facts evolve over time via inter-version facts. We implement a series

of differential fact extractors supporting different programming

languages and platforms, and demonstrate with usage scenarios

the benefits of adopting differential facts in supporting software

evolution management.
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sion control.
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1 INTRODUCTION

Real software is seldom created łall at oncež and changes are in-

evitable [60]. Software developers often take advantage of the

knowledge and insights they gain over time to repair, enhance

and optimize earlier versions of the system through incremental up-

dates. The software artifacts accumulated during the development
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process have become crucial resources for understanding and ana-

lyzing software systems from an evolutionary point of view. These

include not only the source code written, but also the łby-productsž

produced such as code change histories, log messages, and test

run results. Many tools and techniques have been developed to

harvest useful information and use it to support different software

evolution management tasks. For example, trends and patterns ob-

served in the past changes can be used to estimate quality of new

changes [42], characterize architectural evolution [64, 73], optimize

development process [11], identify high-level software functionali-

ties [47, 48], and discover project-specific API usage patterns [54]

as well as developer expertise [16, 58].

These evolution management tasks require not only a clear un-

derstanding about each program version, but also insights about

the longitudinal evolution of program elements introduced by in-

cremental changes. Such understanding and insights are now being

produced by different analysis techniques, and can potentially be

shared and reused. But there still does not exist an effective way

to process, store and exchange information among different analy-

ses. Software Configuration Management systems (SCMs), such as

Git [26] and SVN [61], are widely used in the development practices,

where incremental changes are manually grouped by developers

to form commits (a.k.a. change sets). Yet, the main goal of SCMs

is to support development activities, e.g., recording, examining,

and reverting changes, rather than analysis tasks, e.g., inferring

high-level program properties from changes and establishing re-

lationship among individual changes. The information embedded

in change sets goes beyond lines added and removed. When com-

bined with the understanding of language syntax and semantics,

much richer information can be obtained and analyzed about the

evolution of software.

Inspired by the program fact extraction techniques [1, 2, 7, 33]

which generate facts about a single version of the software arti-

facts, we propose differential facts, a uniform representation of

software changes consolidating relevant information across multi-

ple versions of the same artifacts. Program facts can be any desired

information about the software artifactsÐstructural relations such

as łmethod A is contained in class Cž and semantic relations such as

łmethod A is called by another method Bž, all could be considered

facts. Differential facts go beyond just a single program version,

and consider program changes, which highlight differences and

linkage between multiple versions, as first-class objects. Fig. 1 is an

illustration of the meta-model of differential facts, which demon-

strate only a subset of the possible fact types. These include the

intra-version facts capturing the containment, calling, and referenc-

ing relations between code entities at the same version; there are

also the inter-version facts which include the code-level insertion,
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Figure 1: An example meta-model of differential facts.

deletion, and update changes between the old and new versions as

well as the dependencies [48] between commits.

The inter-version facts are tightly connected to the intra-version

facts through common entity nodes, making it possible to reason

about facts across multiple versions. For example, we represent vari-

ous types of differential facts in a common exchangeable format and

store them in a differential factbase. Then by querying the factbase,

we could answer questions such as łwhat are the functions whose

bodies get changed but the signatures stay constant in an upgradež

and łwhat are the tests potentially be affected by this upgradež. The

differential factbase supports standard Tarski relational algebra [62]

operations such as union, intersection, composition, and transitive

closure. Existing languages and tools, such as JGrok [65], can be

used to query and manipulate facts. To support more complex anal-

ysis tasks and ease the implementation of analysis scripts, Datalog

is also supported so that one can also run inference on differential

factbase using Datalog engines such as Soufflé [37].

Using differential facts to manage evolving software artifacts has

several benefits. First, the factbase serves as an abstraction of the

artifacts and their change histories. It hides all the complex details of

different programming languages as well as change representations

and provides a unified queryable interface for downstream analyses.

Second, the differential facts produced during offline fact extraction

can be shared and reused by many online analyses, thus saving

overall computation resources. Furthermore, with the versioning

information encoded, differential facts support the lifting of analysis

tasks from a single version to multiple versions, and again improves

analysis efficiency. Finally, the fact extractors are relatively light-

weight and built on top of existing tool chains. For instance, facts

can be stored in any relational database for persistent storage and

efficient processing.

We re-implemented several software maintenance tasks with

Diffbase, demonstrating its advantages in efficiency and interoper-

ability. These include a 44% time cost reduction in semantic history

slicing, similar precision without safety violations compared with

the state-of-the-art static regression test selection tools, and about

80% time and space usage reduction in lifted pointer analysis.

Contributions. In this paper, we make the following contributions.

• We present differential facts, a uniform exchangeable representa-

tion of incremental software changes, supporting efficient query-

ing, manipulation, and reuse.

• We implement several differential fact extractors targeting dif-

ferent fact types, programming languages, and platforms. The

prototype tools are open-source and additional results are avail-

able at the companion website: https://d-fact.github.io.

𝑦 ∈ 𝑉 (𝑟 )
Ins( (𝑥,𝑛, 𝑣), 𝑦)

𝑉 (𝑟 ′) ← 𝑉 (𝑟 ) ∪ {𝑥 } Parent(𝑥) ← 𝑦

𝑖𝑑 (𝑥) ← 𝑛 𝜈 (𝑥) ← 𝑣

𝑥 ∈ 𝑉 (𝑟 )
Del(𝑥)

𝑉 (𝑟 ′) ← 𝑉 (𝑟 ) \ {𝑥 }

𝑥 ∈ 𝑉 (𝑟 )
Upd(𝑥, 𝑣)

𝜈 (𝑥) ← 𝑣

Figure 2: Types of atomic changes [23].

• We apply differential facts in three evolution management tasks,

namely semantic history slicing [48], change impact analysis [5],

and regression test selection [67].

• We evaluate our approach on real open-source software projects

and demonstrate the benefits of adopting differential facts over

existing techniques.

2 BACKGROUND

This section introduces the necessary background and terminology.

2.1 Program Change Histories

A valid program 𝑝 can be parsed as an abstract syntax tree (AST),

denoted by Ast(𝑝). Formally, 𝑟 = Ast(𝑝) is a rooted tree with

a set of nodes 𝑉 (𝑟 ). The root of 𝑟 is denoted by Root(𝑟 ) which

represents the compilation unit, i.e., the program 𝑝 .

Each entity node 𝑥 has an identifier and a value, denoted by

𝑖𝑑 (𝑥) and 𝜈 (𝑥), respectively. In a valid AST, the identifier for each

node is unique (e.g., fully qualified names in Java) and the values

are canonical textual representations of the corresponding entities.

We denote the parent of a node 𝑥 by Parent(𝑥). The children are

unorderedÐthe ordering of child nodes is insignificant. Therefore,

each program has its unique AST representation.

Let Γ be the set of all ASTs. Now we define changes, change sets

and change histories as AST transformation operations.

Definition 1 (Atomic Change [48]). An atomic change opera-

tion 𝛿 : Γ ↦→ Γ is a partial function which transforms 𝑟 ∈ Γ producing

a new AST 𝑟 ′ such that 𝑟 ′ = 𝛿 (𝑟 ). It can be either an insert, delete or

update (see Fig. 2).

An insertion Ins((𝑥, 𝑛, 𝑣), 𝑦) inserts a node 𝑥 with identifier𝑛 and

value 𝑣 as a child of node𝑦. A deletionDel(𝑥) removes node 𝑥 from

the AST. An update Upd(𝑥, 𝑣) replaces the value of node 𝑥 with 𝑣 .

A change operation is applicable on an AST if its preconditions are

met. For example, the insertion Ins((𝑥, 𝑛, 𝑣), 𝑦) is applicable on 𝑟 if

and only if 𝑦 ∈ 𝑉 (𝑟 ). Insertion of an existing node is treated the

same as an update.

Definition 2 (Change Set). Let 𝑟 and 𝑟 ′ be two ASTs. A change

set Δ : Γ ↦→ Γ is a sequence of atomic changes ⟨𝛿1, . . . , 𝛿𝑛⟩ such

that Δ(𝑟 ) = (𝛿𝑛 ◦ · · · ◦ 𝛿1) (𝑟 ) = 𝑟 ′, where ◦ is standard function

composition.

A change set Δ = Δ−1 ◦ 𝛿1 is applicable to 𝑟 if 𝛿1 is applicable

to 𝑟 and Δ−1 is applicable to 𝛿1 (𝑟 ). Change sets between two ASTs

can be computed by tree differencing algorithms [12].

Definition 3 (Change History). A history of changes is a se-

quence of change sets, i.e., 𝐻 = ⟨Δ1, . . . ,Δ𝑘 ⟩.

2.2 Program Facts as Typed Graphs

Querying and analyzing program facts (relations) requires a spe-

cialized data structure and a set of operators to manipulate the facts.
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Figure 3: A typed graph illustrating source code and changes

between four consecutive versions.

Now we define typed graph (also known as edge-colored graph),

which is a graph with a fixed number of edge types.

Definition 4 (Typed Graph [33]). Let 𝑇 be a non-empty set of

types. We say that a directed graph 𝐺 = (𝑉 , 𝐸,𝑇 ) is a typed graph

with vertex-set 𝑉 and edge-set 𝐸 ⊆ 𝑉 ×𝑉 ×𝑇 .

We denote edges (𝑣1, 𝑣2, 𝜏) ∈ 𝐸 by (𝑣1, 𝑣2) : 𝜏 . A homogeneous

typed graph 𝐺 of type 𝜏 is a typed graph 𝐺 = (𝑉 , 𝐸, {𝜏}) whose

edges are all the same type 𝜏 . Graphs in the classic graph theory

are equivalent to homogeneous typed graphs and thus just special

cases of typed graphs.

Definition 5 (Typed Sub-Graph). Let 𝐺1 = (𝑉1, 𝐸1,𝑇1) be a

typed graph.𝐺2 = (𝑉2, 𝐸2,𝑇2) is a typed sub-graph of𝐺1, denoted by

𝐺2 ⊆ 𝐺1, if and only if 𝑉2 ⊆ 𝑉1, 𝐸2 ⊆ 𝐸1, and 𝑇2 ⊆ 𝑇1.

Definition 6 (Type-Induced Sub-Graph). Let 𝐺 = (𝑉 , 𝐸,𝑇 ) be

a typed graph and𝑇 ′ ⊆ 𝑇 . We define the type-induced sub-graph of𝐺 ,

denoted by 𝐺 [𝑇 ′], as the typed sub-graph (𝑉 ′, 𝐸 ′,𝑇 ′) of 𝐺 such that

𝐸 ′ = {(𝑣1, 𝑣2, 𝜏) |𝜏 ∈ 𝑇
′} and 𝑉 ′ = {𝑣 | (𝑣, _, _) ∈ 𝐸 ′ or (_, 𝑣, _) ∈ 𝐸 ′}.

Essentially, each type of facts is represented using a separate

edge type (details discussed in Sec. 3.1).

Example. For instance, a simple program with four versions are

shown as a typed graph in Fig. 3. (More details, including the textual

differences between versions and associated facts of this same ex-

ample are provided in Sec. 3.2.) Each of the four rectangles indicates

a version sub-graph, where solid arrows connecting code entities

within rectangles are edges representing static dependencies and

dashed arrows connecting code entities across different rectangles

a : = new A ( ) ;

b : = a ;

Po in tTo ( a , o1 )

Ass ign ( a , b )

Figure 4: Example source code and its corresponding facts.

are edges representing atomic changes. For example, in the sub-

graph associated with 𝐶3, A::h() calls B::f() and references field

A::x. Member methods and fields are all contained within corre-

sponding classes. The circles positioned at the left of the rectangles

are commit entities connected by commit dependency edges. In

this example, the commit history is linear, with 𝐶0 being the oldest

ancestor and 𝐶3 hunk depends on 𝐶2 (cf. Sec. 3.1).

Different sub-graphs can interact by sharing common nodes. For

example, A::x is on edges of łinsertž, łcontainž, and łrefž types.

Nodes and edges can have attributes too. For instance, the commit

nodes 𝐶𝑖 in Fig. 3 are connected to each rectangle as attributes,

indicating the versions those program facts hold. There could also be

other purely informational attributes, such as source code locations.

Algebraic Operators. The list of operators for manipulating typed

graph follow the classic Tarski’s relational calculus [62], which

include identity (𝐸0), inverse (𝐸−1), basic set operations: union (𝐸1 ∪

𝐸2), intersection (𝐸1∩𝐸2), substraction (𝐸1\𝐸2), composition(𝐸1 ; 𝐸2),

transitive closure (𝐸+), and reflexive transitive closure (𝐸∗). Inspired

by projection operator used in JGrok [65], we use ◦ to denote this

variant of composition operation, which takes a set and a relation:

𝑉 ◦ 𝐸 = {𝑣2 |𝑣1 ∈ 𝑉 , (𝑣1, 𝑣2) ∈ 𝐸}, 𝐸 ◦𝑉 = {𝑣1 |𝑣2 ∈ 𝑉 , (𝑣1, 𝑣2) ∈ 𝐸}.

For producing a set (vertices) from a relation (edges), selecting

columns by index is represented as 𝐸 [𝑖] and 𝑖 starts from 1.

2.3 Datalog

To provide inference capability on top of program facts, i.e., the

ability to generate new facts based existing ones, we may choose

to represent typed graphs using Datalog, which is a declarative

logic programming language with syntax similar to that of Pro-

log. Datalog extends relational calculus with recursion and can

be manipulated according to inference rules instead of low-level

relational algebra operations, thus improving both usability and

expressiveness.

Two constructs in Datalog are facts and rules. Rules are defined

as Horn clauses of predicates, usually written in the following form.

𝑟0 (𝑋1, 𝑋2, ..., 𝑋𝑘 ) :− 𝑟1 (𝑌1, 𝑌2, ..., 𝑌𝑠 ), . . . , 𝑟𝑛 (𝑍1, 𝑍2, ..., 𝑍𝑡 ) .

where 𝑟𝑖 is a predicate and the arguments, 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 , are variables

or constants. Considering the existing ambiguity in Datalog defini-

tions, the following concepts used in this paper are defined.

• 𝑟1 (𝑎1, . . . , 𝑎𝑠 ) is a fact if all of its arguments (𝑎1, . . . , 𝑎𝑠 ) are con-

stants. As shown in Fig. 4, a, b, o1 on the right are constants

representing the concrete source elements on the left (o1 is for

the object allocated by new A()).

• Predicates defined a priori by facts can only appear on the right

hand side of rules, which form schema of the extensional database

or EDB and those predicates are called EDB predicates. EDB is

defined as the set of facts of EDB predicates.

• Predicates appeared on the left are defined by rules, which form

schema of intensional database or IDB and those predicates are

called IDB predicates. 𝑟0 is an IDB predicate. IDB is defined as

the combination of a set of rules and facts of IDB predicates.
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0 SCHEME TUPLE :

1 Upd Prog Prog

2 Del Prog Prog

3 Ins Prog Prog

4

5 Contain Prog Prog

6 Call Prog Prog

7 Ref Prog Prog

8

9 Coverage Test Prog

10 Hunk Commit Commit

11 Parent Commit Commit

12

13 SCHEME ATTRIBUTE :

14 (Upd) {commit}

15 (Del) {commit}

16 (Ins) {commit}

(a) General fact schema.

0 SCHEME TUPLE :

1 $INHERIT jProg Prog

2 $INHERIT jClass jProg

3 $INHERIT jFunc jProg

4 $INHERIT jVar jProg

5 $INHERIT jCtor jFunc

6 $INHERIT jMethod jFunc

7 $INHERIT jStaticMethod jMethod

8 $INHERIT jEnum jClass

9

10 Contain jProg jProg

11 Call jFunc jFunc

12 Ref jProg jProg

13 Inherit jClass jClass

(b) Java extended schema.

Figure 5: Fact schema written in TA language.

A Datalog engine consumes EDB and IDB, then produce instances

of IDB predicates according to the rules in IDB. Program facts

can be stored as Datalog facts, with each type-induced sub-graph

representing facts of one predicate.

Example. In a simplified Anderson-style pointer analysis [4], an

assignment operation 𝑦 := 𝑥 marks all objects pointed-to by 𝑥 also

pointed-to by 𝑦, which is expressed by the following Datalog rule:

PointTo ( y , z ) : − PointTo ( x , z ) , Ass ign ( x , y ) .

Here, PointTo and Assign are IDB and EDB predicates, respec-

tively. Following the rule above and the two facts in Fig. 4, a Datalog

engine can produce all facts of IDB predicates, i.e., PointTo(a,o1)

and PointTo(b,o1).

3 DIFFERENTIAL FACTS

In this section, we first present the general schema framework for

differential facts which applies to most of the languages and plat-

forms. We then describe the architecture of Diffbase with various

differential fact extractors and support for fact reusing in specific

tasks. Finally, we describe how analysis lifting is made possible by

the application of differential facts.

3.1 General Schema Framework

We construct the differential factbase as a typed graph with typed

nodes. This is to differentiate various types of entities in program

facts. Let the set of all node types be 𝑇𝑣 . Then the fact schema is

described by,𝑀 ⊆ 𝑇𝑣 ×𝑇𝑣 ×𝑇 .

Similar to the relation declarations inDatalog and the fact scheme

in the TA language [32], the fact schema describes the meta-model

of a differential factbase. What follow are the fact instances, which

represent the edges of the graph, following the rules described by

the schema. The rules can be explicitly written as, ∀(𝑣1, 𝑣2, 𝜏) ∈

𝐸 · (𝑡 (𝑣1), 𝑡 (𝑣2), 𝜏) ∈ 𝑀 , where 𝑡 (𝑣) is the type of the node 𝑣 .

Fig. 5a shows the general schema for differential facts, written in

TA language. The general schema only defines the core entities and

generic entity relations, which are not specific to any programming

language or version control system. The entity types, Prog, Commit,

and Test (Lines 1ś3) are defined to represent AST nodes, commit

objects, and test cases, respectively. Based on these entity types,

we define four classes of relations, namely, the static dependency,

coverage, atomic changes, and commit dependency.

History
Atomic
Changes

Static
Dependency

Code
Coverage

C/C++

Java

more languages

Git Repo

Source Code
(multiple
versions)

Source Code
(multiple
versions)

Static
Analyzer
Output

(Dynamic)
Coverage

Information

Factbase Analysis Scripts

...SouffléGrokQuery EngineAnalysis Results

Figure 6: An overview of Diffbase architecture.

Let 𝐺 be the typed graph containing all differential facts. Each

class of relations can be viewed as a type-induced sub-graph,

𝐺 [𝑇𝑠 ] = 𝐺 [ {Call, Ref,Contain}] (static dependency)

𝐺 [𝑇𝑐 ] = 𝐺 [ {Cov}] (coverage)

𝐺 [𝑇𝑑 ] = 𝐺 [ {Ins,Upd,Del}] (atomic changes)

𝐺 [𝑇ℎ ] = 𝐺 [ {Hunk, Parent}] (commit dependency)

𝐺 [𝑇𝑠 ] captures the dependency relations between Prog, namely,

Call, Ref, and Contain, with their standard semantics. 𝐺 [𝑇𝑐 ] cap-

tures the coverage relations between Test and Prog, denoted by

Cov, and the relation holds when a test run covers the given code

entity. 𝐺 [𝑇𝑑 ] captures three types of atomic changes, namely, Ins,

Upd, and Del.1 Finally, 𝐺 [𝑇ℎ] captures two types of dependencies

between commits, namely the hunk dependency [48] and the his-

tory dependency, denoted by Hunk and Parent respectively. For

instance, there are history dependencies from a parent commit to

all its children. Among those sub-graphs, commit dependencies and

atomic changes lead to inter-version facts, while facts describing

static dependencies and coverage information are intra-version. For

intra-version facts, we designate the commit to which an atomic

change belongs, as an attribute of the corresponding fact.

The general schema can be extended for specific types of artifacts

by adding new schema rules. Fig. 5b shows a simplified specific

extension for Java. They key extension is a hierarchy of language-

specific types (Lines 1ś8). With those language-specific types, the

typing information in relations can be refined (Lines 10ś12) and

new relations can be added (Line 13). For example, parameters of

Call are now jFunc instead of the generic type Prog; and Inherit is

added to represent the inheritance relations between jClass types.

Since facts we use are low-level, any structured data with a well-

defined schema can be encoded and extended similarly. Examples

include architecture diagram, E-R diagram, and other UML models.

In this paper, we focus on facts extracted from source code and

commit histories.

3.2 Extraction of Differential Facts

The overall architecture of Diffbase’s fact extraction and query

engine is shown in Fig. 6. We implement Diffbase as a general

framework supporting different tasks with the help of multiple fact

extractors and analysis scripts. In practice, Diffbase can be inte-

grated with IDE and version control tools or services (e.g., GitHub),

accumulating facts incrementally with the evolution of software.

1For readability and simplicity, edge types will be used to represent edge sets of
corresponding types when there is no ambiguity, i.e., Ins means 𝐸 [Ins].
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v0.2

𝐶3

𝐶2

𝐶1

𝐶0

v0.1

class B {

- double u;

+ public:

+ const static int y = 0;

+ static int f(int x){

+ return x-1;}

};

class A {

+ int x;

public:

- int g() {return 0;}

+ int g() {

+ return B::y + 1;

+ }

};

class A {

int x;

public:

+ int h() { return B::f(x);}

int g() {

return B::y + 1;

}

};

Ins B::static-int-f-int class-B

{commit: f992f4e}

Ins B::static-int-y class-B

{commit: f992f4e}

Del B::double-u class-B

{commit: f992f4e}

Upd A::int-g {return B::y+1}

{commit: 0c94630}

Ins A::int-x class-A

{commit: 0c94630}

Ins A::int-h class-A

{commit: bf574d7}

Figure 7: Example change history.

The rectangles at the top represent data sources, including Git

repositories, source code versions, and coverage information ob-

tained from test runs. These are either raw inputs or easily derived

by running existing tools such as compilers. The rounded rectan-

gles below represent basic facts, extracted from corresponding data

sources, where the fact extraction processes are represented by

incoming double arrows. The factbase is where the basic facts are

organized and stored, and analysis scripts are executed to derive

the analysis results in the form of new facts.

To perform an empirical evaluation on the various applications of

differential facts, we implemented several fact extractors supporting

different programming languages and platforms. (1) We developed

inter-version fact extractors for C/C++ and Java. We replaced the

C/C++ back-end of the AST differencing tool, GumTree [21], with

our own AST emitter based on Clang [13] to ensure maximal com-

patibility. The Java version is implemented based on ChangeDis-

tiller [24]. (2) We developed extractors for test coverage facts based

on existing code coverage toolsÐGcov [25] for C/C++ and JaCoCo

Code Coverage Library [35] for Java. (3) We used ClangEx [3] and

Apache BCEL [6] to extract intra-version static dependency facts,

for C/C++ and Java, respectively. (4) We developed a language-

neutral extractor for commit dependencies based on CSlicer [48].

(5) We built a tool for merging version annotated facts to support

lifted analyses. The implementation of these fact extractors is rela-

tively simple thanks to the existing open source tools. The support

of new fact types and programming languages in the future is also

straightforward.

Facts are mainly stored in the format of Tuple-Attribute files.

For example, intra-version dependency facts of each version are

stored in a separate text file and each line represents a łdepends

onž relation between two program entities. JGrok [65] is used to

query facts in TA language. Facts in the lifting experiments are

represented in Datalog, where facts for each relation is stored in a

separate file. The Datalog engine we used is Soufflé [37].

Example. To give a more detailed view on the typed-graph model

and inter-version fact extraction from software change histories,

we provide a walk-through of the example illustrated in the typed

graph (Fig. 3) with textual differences and associated facts. As shown

in Fig. 7, the short history includes changes on two simple classes,

A and B. There are four commits shown, from 𝐶0 to 𝐶3, among

which 𝐶0 is the initial commit and its text diff is left out. Alongside

the commit history represented by the line in the middle are unified

diff and the corresponding differential facts.

In change set 𝐶1, a member declaration B::u was removed, re-

placed by another member B::y and a member function B::f()

was added. According to Defs. 1 and 2, the changes can be described

as a change set Δ1 including three AST transformations:

• Del(B::u@C0)

• Ins((B::y@C1, B::static-int-y, 0),B))

• Ins((B::f@C1, B::static-int-f-int, {return x-1}),B)

Accordingly, three facts reflecting the changes are produced, as

shown on the opposite sides of textual diffs in the figure. Code

entities in facts are represented as a string containing entity names,

types, other modifiers if exist, and version numbers. For simplicity,

𝐶0, . . . ,𝐶3 are used instead of the commit hashes and attributes

enclosed in brackets are written right below the relations they

belong to, to avoid duplication of relation texts. Each Ins operation

can be converted to an Insert fact, using the id field as its second

operand, while the first operand is a special code entity denoted by

NULL. Actual contents of the inserted entities defined as value are

left out in facts. Meanwhile, the parent node can be found with the

help of intra-version facts as shown in Fig. 3. A Delete fact can be

deduced by using the only parameter of Del operation as its first

operand, while keeping the second one as NULL.

Then in 𝐶2, a member declaration A::x was inserted and the

body of A::g() was changed. Δ2 includes two atomic changes

displayed as follows.

• Ins((A::x@C2, A::int-x, nil),A))

• Upd(A::int-g@C1, {return B::y+1;})

The Update facts are also produced from the Upd operations with-

out the value, and a string representation of the AST node names

and the version information are used as the two operands.

Finally, in𝐶3, a member function B::h() was added, which calls

B::f() and references A::x.

• Ins((A::int-h@C3, A::int-h, {return B::f(x);}),A))

One limitation of this approach is that users must define the

scope of their desired analyses beforehand and then configure Diff-

base and the corresponding fact extractors on how fine-grained

the facts and queries should be. The evolution analysis tasks pre-

sented in this paper operate at the method-level, so facts extracted

do not contain more fine-grained information, such as the orders of

statements. If users decide that changes on individual statements

are important to them, e.g., to perform data-flow analysis, then

extractors have to be reconfigured and facts are to be regenerated.

3.3 Reusing of Differential Facts

Differential factbase not only supports storage, exchange, and ma-

nipulation of facts, but also enables reusing of facts in different ways.

Many complex software analysis tasks require information from

various sources, which may be used more than once in subsequent

analyses. This creates opportunities for performance improvement

if repeatedly used information is persisted and reused. However,
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Δ𝐵1 Δ𝐵2 Δ𝐵3

𝐹𝑎1 𝐹𝑎2 𝐹𝑎3

𝐹𝑏

𝑇𝐴 𝑇𝐴 𝑇𝐴

(a) Cross-run

𝐹𝑎 𝐹𝑏 𝐹𝑐

Δ𝐵1 Δ𝐵2

𝑇𝐴1 𝑇𝐴2

Analysis 1

Analysis 2

(b) Cross-analysis

Figure 8: Fact reusing between sub-tasks.

intermediate analysis results are often not explicitly exposed or rep-

resented in non-standard formats, whichmakes reusing challenging

when performing new tasks.

We propose to separate the creation and the usage of facts: Diff-

base serves as an intermediate layer providing uniformed data

format to the downstream analysis scripts. This enables efficient

and flexible reuse of both the data and the analysis logic. We first de-

fine necessary terminology, before illustrating the possible venues

of reusing.

Definition 7. (Analysis Task). Let 𝐹 be a set of facts and 𝐴 be

an analysis script with a set of operations. We define 𝐵 = 𝑇𝐴 (𝐹 ) as

an analysis task taking 𝐹 as the input and producing 𝐵 as the results,

where 𝐹 ⊆ 𝐵.

An analysis task grows the set of known facts and it can com-

prise several sub-tasks. Some sub-tasks depend on others, while

independent sub-tasks can be executed in parallel. For simplicity, a

task is represented as a linearized composition of sub-tasks.

Definition 8. (Analysis Sub-Task). Let ⟨𝑇𝐴1
, . . . ,𝑇𝐴𝑛

⟩ be a se-

quence of tasks. We say {𝐵𝑖+1 = 𝑇𝐴𝑖
(𝐹𝑖 ) ∪ 𝐵𝑖 | 𝑖 ∈ [1, 𝑛]} are

sub-tasks of 𝑇𝐴 (𝐹 ) if and only if 𝑇𝐴 (𝐹 ) = 𝑇𝐴𝑛
◦ · · · ◦𝑇𝐴1

(𝐹 ).

With the completion of more sub-tasks, the set of facts available

for consumption, i.e., 𝐵𝑖 , is also growing. The amount of growth

is defined as Δ𝐵𝑖+1 = 𝐵𝑖+1 − 𝐵𝑖 . The set of facts consumed by a

sub-task is only a subset of the facts available at the moment, i.e.,

𝐹𝑖 ⊆ 𝐵𝑖 .

There are various scenarios where reuse can happen with the

support of Diffbase. We first discuss the cases where facts can be

shared among multiple analysis tasks. These include the cross-run

and the cross-analysis fact reusing. Note that this is not a unique

feature for differential facts and applies for other program fact-

based approaches as well.

Cross-Run Fact Reusing. One common scenario for fact reusing

is when the same analysis task is repeatedly performed with only

part of the input data varying every time. For example, in Fig. 8a,

an analysis task 𝑇𝐴 is executed three times, but on different inputs

sharing common facts, where 𝐹𝑖 = 𝐹𝑎𝑖 ∪ 𝐹
𝑏 . Here only 𝐹𝑎𝑖 needs to

be created across different runs and 𝐹𝑏 can be reused. A real-world

example is Semantic history slicing [46, 48, 72] and an in-depth

analysis of this scenario can be found in Secs. 4.1 and 4.2.

Cross-Analysis Fact Reusing. Similar to the cross-run reusing,

two different analysis tasks can share information through per-

sistent facts. As shown in Fig. 8b, two tasks, 𝑇𝐴1
and 𝑇𝐴2

, require

{𝐹𝑎, 𝐹𝑏 } and {𝐹𝑏 , 𝐹𝑐 } as inputs, respectively. Because they both

require 𝐹𝑏 as a part of their inputs, 𝐹𝑏 needs only be created once,

but can be used many times subsequently.

If we were to perform both history slicing (𝑇𝐴1
) and regression

test selection [20] (𝑇𝐴2
) on the same software project within the

same history range, then we would be able to reuse differential

facts across the two analyses. In particular, intra-version facts in-

cluding the test dependencies and inter-version facts (i.e., change

information) can be reused. Experimental results and more detailed

discussions on cross-analysis fact reusing can be found in Sec. 4.3.

Analysis Script Reusing. Apart from reusing facts, Diffbase

also enables the reusing of analyses. Analysis scripts implementing

inference logic can be reused on different input data. The analysis

script reusing can be viewed as a special case for cross-run reusing.

When the same analysis task 𝑇𝐴 is executed multiple times on

disjoint input facts, not being able to reuse facts, we may still reuse

the analysis script 𝐴. This is made possible with the hierarchical

design of our schema framework, which is general enough to be

compatible with different types of input facts. For example, the core

analysis script needs only written once using the basic schema, and

specific extensions can be added accordingly. We demonstrate this

with a case study on history slicing (Sec. 4.1.1), where the fact usage

becomes language- and platform-agnostic.

3.4 Analysis Lifting on Differential Facts

The differential fact schema presented so far represents extracted

facts as a typed graph and supports querying using relational al-

gebra as defined in Sec. 2.2. This is sufficient to support many

rudimentary analysis tasks concerning about only the structural

information represented by the graph. Examples include history

slicing, change impact analysis, and regression test selection, which

will be discussed in detail in Sec. 4.1.

More importantly, we show that, when combined with infer-

ence rules, differential facts can support analysis lifting [59], which

greatly improves the efficiency. Analysis lifting is the process of

adapting a single-version analysis task to a lifted analysis which

works on multiple versions simultaneously. For example, a points-to

analysis, which determines the set of objects potentially pointed to

by a program expression, can be lifted to multiple versions of the

same program. Instead of applying a brute-force approach, where

each version is analyzed separately, the lifted points-to analysis

would take the differential facts of 𝑛 versions and produces the

expected results for all versions. Analysis lifting creates new op-

portunities for reusing of the intermediate analysis results, which

will be discussed more in Line 15.

The lifting of analyses largely depends on the version anno-

tated facts. Inspired by Shahin et al.’s lifting algorithm [59] on

software product lines, version annotated facts have an additional

version tag after usual fact terms. The tag is a sequence of version

strings, following an ł@ž symbol and separated by commas, in-

dicating the set of versions on which the facts hold. For example,

łfn-a fn-b @v1,v2ž in an input file Call.facts means that the

fact, fn-a calling fn-b, holds on both v1 and v2.

Algorithm 1 shows the modified Datalog inference algorithm

to properly handle version annotated EDB facts and generate IDB

facts with correct annotations. It takes basic facts (𝐸) generated

from fact extractors and Datalog programs (𝑃 ) which specify how

to generate new facts from existing ones as input. The basic facts

are tagged with versions and merged into a compact representation.
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Input: annotated EDB facts 𝐸 and IDB facts 𝐼 , Datalog program 𝑃

Output: updated IDB facts 𝐼

1 repeat

2 fixpoint← true;

3 foreach rule 𝑅 = (𝑟0 :− 𝑟1, . . . , 𝑟𝑛) ∈ 𝑃 do

4 foreach ⟨(𝑓1, 𝑣1), . . . , (𝑓𝑛, 𝑣𝑛) ⟩ ∈ 𝐸 ∪ 𝐼 , 𝑟𝑖 (𝑓𝑖 ) is true do

5 𝑓0 ← 𝑅 (𝑓1, . . . , 𝑓𝑛) ;

6 𝑣𝑔 ←
⋂

𝑖 𝑣𝑖 ;

7 if 𝑣𝑔 ← ∅ then continue;

8 if ∃(𝑓0, 𝑣0) ∈ 𝐼 then

9 if 𝑣𝑔 ≠ 𝑣0 then

10 fixpoint← false;

11 Update 𝐼 : (𝑓0, 𝑣0) ← (𝑓0, 𝑣𝑔 ∪ 𝑣0) ;

12 else

13 fixpoint← false;

14 𝐼 ← 𝐼 ∪ (𝑓0, 𝑣𝑔) ;

15 until fixpoint;

Algorithm 1: Lifted Datalog inference algorithm (Î) on differ-

ential facts.

𝐹1 𝐹𝑛

Δ𝐵1 Δ𝐵𝑛

𝑇𝐴 𝑇𝐴. . .

𝐹 (1..𝑛)

𝐹1 𝐹𝑛. . .

Δ𝐵 (1..𝑛)

Δ𝐵1 Δ𝐵𝑛
. . .

𝑇𝑀1

𝑇𝐴

Figure 9: Analysis reusing enabled by lifting.

The algorithm first sets the fixpoint variable to true and iterates

over the rules from 𝑃 (Lines 3 to 14). The condition ł𝑟𝑖 (𝑓𝑖 ) is Truež

on Line 4 indicates that 𝑓𝑖 is a fact on the predicate 𝑟𝑖 . For each set of

existing facts in EDBwhich satisfies the predicates on the right hand

side of the rule, i.e., ⟨(𝑓1, 𝑣1), . . . , (𝑓𝑛, 𝑣𝑛)⟩, the annotated version

labels are intersected with the existing ones (Line 6) and a new fact

𝑓0 is generated by applying the rule. (On Line 5, 𝑓0 ← 𝑅(𝑓1, . . . , 𝑓𝑛)

means applying the rule 𝑅 on facts (𝑓1, . . . , 𝑓𝑛) to generate a new

fact 𝑓0.) If the computed intersection is empty (Line 7), then we

know that this new fact does not hold at any version.

Otherwise, we search the IDB facts for 𝑓0. If there already exists

a fact 𝑓0 with a different version label set, we set the fixpoint vari-

able to false and update IDB by replacing the version annotation

(Line 11). If 𝑓0 is not already in IDB, this new found fact is added

with its version annotation (Line 14) and in this case, fixpoint is also

set to false. The algorithm terminates when a fixpoint is reached,

and the resulting IDB facts (𝐼 ) contains the analysis results anno-

tated with the correct version labels. The correctness of Algorithm 1

is given in Theorem 1 and we provide the proof on the companion

website.

Theorem 1. Let I and Î be the unlifted and lifted inference algo-

rithms, respectively. Given an EDB 𝐸 annotated with version strings

from a set𝑉 and a Datalog program 𝑃 , we have ∀𝑣 ∈ 𝑉 : Î (𝐸, 𝑃) |𝑣 =

I (𝐸 |𝑣, 𝑃), where ·|𝑣 selects facts which are valid on version 𝑣 .

Lifting-Enabled Reusing.When a complex analysis task consists

of multiple similar sub-tasks, intermediate results produced by ear-

lier sub-tasks may be reused by the latter ones. This is not possible

if the sub-tasks are implemented as standalone black-boxes. Algo-

rithm 1 automatically enables the sharing of intermediate results:

instead of performing an analysis on 𝑛 versions of a project sepa-

rately, we can run it once on the consolidated differential facts. Fig. 9

Table 1: Summary of experiments and RQs answered.

History Slicing CIA RTS Lifting

Sections Secs. 4.1.1 and 4.2 Sec. 4.1.2 Sec. 4.3 Sec. 4.4

RQs RQ1,2 RQ1,3 RQ4

⟲ 𝐺 [𝑇𝑠 ] ⇋ 𝐺 [𝑇𝑠 ] ⇋ 𝐺 [𝑇𝑠 ] ↕ intra-version facts

Facts ⟲ 𝐺 [𝑇𝑑 ] ⇋ 𝐺 [𝑇𝑑 ] ⇋ 𝐺 [𝑇𝑑 ]

(Re)used ⟲ 𝐺 [𝑇ℎ]

𝐺 [𝑇𝑐 ]

illustrates this process. The left side shows the case where the task

𝑇𝐴 is executed on 𝑛 versions individually, i.e., ⟨𝑇𝐴 (𝐹1), . . . ,𝑇𝐴 (𝐹𝑛)⟩.

When𝑇𝐴 is lifted, the new analysis process includes three sub-tasks,

⟨𝑇𝑀1
,𝑇𝐴 (𝐹

(1..𝑛) ),𝑇𝑀2
⟩, where𝑇𝑀1

merges {𝐹1, . . . , 𝐹𝑛} into 𝐹
(1..𝑛) ,

𝑇𝐴 runs on the merged facts, and 𝑇𝑀2
consolidates the results with

the correct version labels. Essentially, the lifted 𝑇𝐴 enables the

reusing of the analysis sub-tasks common to all versions.

4 EVALUATION

In this section, we aim to answer the following research questions

through the empirical evaluation. RQ1: how does differential facts

support evolution management tasks? RQ2: how significant is the

efficiency improvement brought by fact reusing? RQ3: how well

does differential facts support cross-analysis reusing? RQ4: how

significant is the efficiency improvement brought by lifting enabled

analysis reusing?

The mappings between the experiments and RQs answered

are shown in Table 1. In Sec. 4.1, two case studies, history slic-

ing and change impact analysis (CIA) are conducted to answer RQ1.

Then in Sec. 4.2 we answer RQ2 by demonstrating that cross-run

facts reusing saves time in history slicing. To answer RQ3, we

re-implement regression test selection (RTS) based on differential

facts and validate cross-analysis reusing in Sec. 4.3. Finally, Sec. 4.4

answers RQ4 with a lifting-enabled reusing for pointer analysis.

In Table 1, we also summarize the facts reused in each experiment

using the graph notations from Sec. 3.1, i.e., 𝐺 [𝑇𝑠 ] corresponds to

static dependency facts, 𝐺 [𝑇𝑑 ] represents atomic changes, 𝐺 [𝑇ℎ]

represents commit dependencies and𝐺 [𝑇𝑐 ] captures coverage in-

formation. Symbols before each type of facts indicate how facts are

reused: cross-run reusing is prefixed by⟲ , cross-analysis reusing

is prefixed by⇋, and ↕means lifting-enabled reusing.

The following experiments were conducted on a 6-core Intel(R)

Xeon(R) CPU E5-1650 v3 @ 3.50GHz machine with 16 GB RAM,

running Debian sid, with OpenJDK 1.8.0_151 and Python 3.7.4. The

fact extractor implementations, analysis scripts, and raw data are

available as supplemental materials at: https://d-fact.github.io.

4.1 Case Study: Diffbase in Evolution Tasks

Diffbase serves as an infrastructure for storing, exchanging, and

manipulating multi-version program relations embedded in soft-

ware change histories, which enables a wide range of evolution

management tasks. We conducted case studies on two of such tasks,

namely, semantic history slicing and change impact analysis.

4.1.1 History Slicing with Differential Facts. The state-of-the-art

history slicing technique, CSlicer [48], relies on static analysis of

dependencies between atomic changes to decide which commits to
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keep in the history slices, in order to pass certain tests. It first ana-

lyzes the latest program version to collect test coverage information

and then computes an over-approximated set of atomic changes

touching the covered elements. Then, through change dependency

analysis [48], it includes additional changes required for proper

compilation of the program. Finally, the identified atomic changes

are mapped back to the commits in the original change history. The

produced history slices are guaranteed to not causing any merge

conflict, and the resulting program is guaranteed to compile and

pass the tests.

The original CSlicer was implemented as a monolithic appli-

cation which only works on Java projects. In this case study, we

re-implement it with Diffbase in order to achieve better reusing

and support for multiple programming languages.

𝑅𝑓 = 𝐶 ; (Ins ∪ Upd ∪ Del) (1)

𝐷 = 𝐶 ◦ (Call ∪ Ref ∪ Contain)+ (2)

𝑅𝑑 = 𝐷 ; (Ins ∪ Del) (3)

The aforementioned history slicing process can be described as

algebraic operations on typed graphs. Each slicing criteria defined

by a group of tests is a set of vertices 𝑇 in the sub-graph Cov,

where each edge connects two vertices, namely, a test entity and

a code entity. To find the affected code entities by one specific

slicing criteria, we find the corresponding code entities from its test

entities, denoted by 𝐶 = 𝑇 ◦ Cov. The atomic changes touching the

covered elements are equivalent to the subset 𝑅𝑓 = (𝑣, _) ⊆ 𝐸 [𝑇𝑑 ]

where 𝑣 ∈ 𝐶 , thus can be calculated by applying composition on 𝐶

and all three types of atomic changes relation, as shown in Eq. (1).

Next is to calculate the set of all code entities depended on by

𝐶 . This can be done by traversing the static dependency graph

𝐺 [𝑇𝑠 ] starting from the vertices in 𝐶 . We use the transitive closure

operator to collect all vertices reachable from 𝑣 in the dependency

graph𝐺 [𝑇𝑠 ], and produce the resulting code entities by projecting𝐶

through the closure (Eq. (2)). Moreover, the atomic changes touching

code entities in 𝐷 is captured by the subset 𝑅𝑑 = (𝑣, _) ⊆ 𝐸 [Ins] ∪

𝐸 [Del], where 𝑣 ∈ 𝐷 . Hence, we derive 𝑅𝑑 from the composition

shown in Eq. (3). Upd is excluded in the calculation of 𝑅𝑑 , since

modifications to program entities only appearing in 𝐷 shall not

affect compilations. But insertions and deletions of entities in 𝐷 are

essential to avoid compilation errors.

𝑅𝑓 and 𝑅𝑑 contains all the atomic changes which should be

kept in the history slice. Therefore, the resulted history slice is

the set of commits associated with change set 𝑅𝑓 ∪ 𝑅𝑑 . We were

able to verify the correctness of our implementation by comparing

with the original CSlicer on a number of C/C++ and Java projects,

which demonstrates Diffbase’s support for interoperability. We

also perform a performance evaluation in Sec. 4.2.

4.1.2 Change Impact Analysis with Differential Facts. It is also pos-

sible to implement change impact analysis [5, 56] using the same

set of facts as in Sec. 4.1.1. From the high-level, we would like to

identify the set of code entities potentially affected by a commit.

This can be derived by first mapping the changed entities from the

given commit and storing them in 𝑋 .

𝑋 = (Upd ∪ Del ∪ Ins) [1] (4)

𝐷 = (Call ∪ Ref ∪ Contain)∗ ◦𝑋 (5)

Then we derive the set of affected entities (𝐷 in Eq. (5)) by finding

all entities that transitively depend on the elements of 𝑋 . This is

realized by projecting the reflexive transitive closure of the union

of all dependency relations onto 𝑋 .

The change impact analysis query can be further applied in a

library upgrade scenario, where we try to find out the client classes

affected by a library upgrade. When an original version of the

library 𝑙𝑖𝑏 upgrades to the upgraded version 𝑙𝑖𝑏 ′, the fact set 𝑋 ′ in

Eq. (6) captures all the updates and deletions between 𝑙𝑖𝑏 and 𝑙𝑖𝑏 ′.

Note that we leave out insertions, because client cannot depend on

program entities which do not exist in the original version of the

library.
𝑋 ′ = (Upd ∪ Del) [1] (6)

Taking a client 𝑐𝑙𝑖 as input, the depedency graph𝐺 [𝑇𝑠 ] captures

all call, contain, reference relations between entities within 𝑐𝑙𝑖 , as

well as call and reference from 𝑐𝑙𝑖 to 𝑙𝑖𝑏. Therefore, using Eq. (5)

on 𝑋 ′, we can find out all program entities in the client which

directly or indirectly depend on the modified or deleted library

entities. In practice, 𝐷 can be used to guide the test generator to

more efficiently generate tests. After executing those tests with

both 𝑙𝑖𝑏 and 𝑙𝑖𝑏 ′, any test failure reveals an incompatibility caused

on 𝑐𝑙𝑖 , brought by the upgrade of 𝑙𝑖𝑏. This effectively implements a

light-weight solution for the client-specific upgrade checking prob-

lem [49]. We implemented this task with the same fact extractors

used in Sec. 4.1.1 and more results are presented on the companion

website.

4.2 Experiment: Cross-Run Fact Reusing

In this experiment, to demonstrate the efficiency improvement

brought by cross-run fact reusing, we compare our differential facts

based history slicing technique with CSlicer, a state-of-the-art

semantic history slicing tool.

4.2.1 Subjects. Since CSlicer does not work on C/C++ projects,

the performance evaluation was conducted on Java projects. To

evaluate how fact reusing can improve the efficiency of history

slicing, we use a benchmark consisting of 37 functionalities selected

from the DoSC dataset [71]. Each functionality is identified by a

unique key which refers to its corresponding issue key on the

JIRA issue tracker [36] and is accompanied by a set of tests. DoSC

includes the starting and ending commit of the software history

which determine the life cycle of the development of a functionality.

We selected functionalities from eight open source projects,

namely, Compress [14], Configuration [15], CSV [17], Flume [22],

IO [34], Lang [43], Maven [52], and Net [53]. All of these projects

are written in Java and have publicly accessible change histories. Ini-

tially, five functionalities were randomly selected from each project

available in DoSC. We then removed functionalities that are cur-

rently not supported by CSlicer (e.g., those that include changes

that modify non-Java files, because CSlicer does not handle such

files). In the end, our experiments used 10 different history ranges

and 37 functionalities from eight projectsÐsee Table 2 (the first

column) for their unique keys. In Table 2, each ID corresponds to a

history range marked by the SHA-1 of the Start and End commits,

as well as the number of commits (i.e., Length). Those subjects from

the same projects with different history ranges are distinguished

by suffixes (e.g., ł-1ž and ł-2ž).
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Table 2: Subjects used in the history slicing experiment.

ID Projects
History

# Criteria
Start End Length # Edited Files LOC(+) LOC(-)

COMPRESS Apache Commons Compress 99bc508 b29395d 148 144 4,644 2,006 5

CONFIG Apache Commons Configuration 89428f1 9fb4ad8 50 34 1,201 655 2

CSV Apache Commons CSV b230a6f5 7310e5c6 79 28 1,640 713 4

FLUME-1
Apache Flume

cda3bd10 31d45f1b 101 181 14,742 3,097 3

FLUME-2 f7560038 5e400ea8 100 428 17,341 8,187 3

IO Apache Commons IO 8de491fc b1b9f1af 136 182 5,647 1,681 5

LANG Apache Commons Lang 24767d6 76cc69c 262 146 6,741 2,076 8

MAVEN-1
Apache Maven

b175144 308d4d4 51 78 1,816 713 3

MAVEN-2 b7e3ce2 ea8b2b0 97 160 4,431 4,144 2

NET Apache Commons Net d483631 abd6711 269 233 6,845 2,393 2

LANG

IO

FLUME-2

FLUME-1

CSV

CONFIG

COMPRESS

35.25

10.07

10.55

8.78

5.27

11.73

17.52 CSlicer Static

Test Query

141.06

25.25

25.48

12.43

7.76

7.72

35.81

NET

MAVEN-2

MAVEN-1

22.29

20.86

13.15

53.09

25.89

14.43

Figure 10: Comparison of the time costs (in seconds) between

Diffbase and CSlicer.

4.2.2 Results. The efficiency improvement of the fact-based his-

tory slicing, implemented using Diffbase, come from the reusabil-

ity of facts. With our approach, when there exist slicing tasks which

operate on the same fragment of history differed only in slicing cri-

teria, all facts except coverage facts are generated once and stored

for reusing, while CSlicer does repeated work. We compare the

total time used by our approach and CSlicer on all subjects and

also on the basis of each unique history segment, defined by the

3-tuple (Project, HistoryStart, HistoryEnd) in Table 2. As shown in

Fig. 10, each pair of bars represent the time costs of Diffbase and

CSlicer, respectively. The time costs of Diffbase are divided into

three parts: static dependency fact extraction (łStaticž, recorded per

history segment), test coverage fact extraction (łTestž, recorded per

functionality), and query processing (łQueryž). Our approach per-

forms consistently better than CSlicer. The one exception where

it performs worse is CONFIG, which has the shortest history and

fewest LOC in all projects. Therefore, time saved from storing differ-

ential facts is counteracted by the time costs of querying, depicted

by a larger portion of query processing time shown in the stacked

part of the bar plot.

Answer to RQ1 & RQ2: In all experiments, differential facts

based history slicing can produce correct slices, matching the

results of the state-of-the-art tools. It also operates on multiple

languages. On average, we reduce 44% of the time cost by re-

using differential facts. It performs worse in only one subject,

while it runs 75% faster in the best case.

4.3 Experiment: Cross-Analysis Fact Reusing

In this experiment, to evaluate the effectiveness of cross-analysis

fact reusing, we implemented the regression test selection (RTS)

technique proposed by Yoo et al. [67] based on differential facts,

and compared it with three state-of-the-art RTS tools.

We implemented our fact-based RTS by reusing the facts col-

lected from the change impact analysis experiment in Sec. 4.1.2.

Specifically, for a given commit, we first extracted the set of pro-

gram entities affected by it (𝐷 in Eq. (5)), then intersected these

entities with the set of test entities to obtain the set of tests affected

by the commit (𝑅 in Eq. (7)). From a query’s perspective, given the

set of test entities 𝜏 , 𝑅 is the intersection of 𝜏 and 𝐷 .
𝑅 = 𝜏 ∩𝐷 (7)

The resulting set 𝑅 contains the selected regression tests that needs

to be rerun on this new commit. This implementation demonstrates

how differential facts are used, in a cross-analysis manner, to sup-

port reusing intermediate results across different evolution man-

agement tasks.

4.3.1 Experiment Setup. To evaluate our fact-based RTS, we use

the DefectsEP component proposed in [70], a state-of-the-art frame-

work for evaluating RTS tools. DefectsEP uses 151 real-world bugs

from three Java projects as evaluation subjects, which were selected

from the Defects4J dataset [38]. Table 3 shows the original project

IDs and bug IDs of these subjects in Defects4J. The bug IDs are

consecutive and inclusive, e.g., ł28-53ž means the bugs No.28, No.53,

and all others falling in between.

In DefectsEP, for each bug, two consecutive revisionsÐ𝑉bug and

𝑉fixÐof the program are provided in the dataset, such that there is

at least one triggering test fails at 𝑉bug and passes at 𝑉fix. Given a

set of RTS tools as input, for each bug, DefectsEP runs each tool on

both versions in the order 𝑉fix → 𝑉bug, and collects the number of

selected and failing tests on 𝑉bug of each tool. In the end, for each

RTS tool under test, DefectsEP contrasts its result with other tools

and RetestAll (a baseline strategy that always runs all tests) and

uses a set of rules to detect abnormal behaviors. For each identified

abnormal behavior, it reports a violation to the user. By default,

DefectsEP evaluates safety, precision, and generality of each tool.

In our experiment, we focus on safety and precision, as they are

fundamental properties of RTS tools [70].

To evaluate safety, we compare the number of newly failing tests

on 𝑉fix selected by that tool versus RetestAll, i.e., applying the rule

R1 in [70]. The rationale is that a safe RTS tool should never miss

a newly failing test, as the test is for sure affected by the changes

in 𝑉fix → 𝑉bug. If on a subject, a tool misses any newly failing

test, then the subject is counted as a safety violation of the tool.

To evaluate precision, we compare the number of tests selected by
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Table 3: Experimental results of the RTS experiment.

Projects Bug IDs
Selected Test Methods (Avg. %)

Clover Ekstazi STARTS FACTS

LANG 28-53 10.4% 26.4% 53.9% 54.1%

MATH 5-104 9.5% 12.8% 20.0% 16.7%

TIME 1-20,22-26 100.0% 47.8% 100.0% 100.0%

# Safety Violations 16 1 1 0

each tool. Given RTS tools 𝑅1 and 𝑅2, if both tools do not violate

safety, i.e., do not miss newly failing tests, 𝑅1 is considered to be

more precise than 𝑅2 if 𝑅1 selects fewer tests than 𝑅2.

We compare our fact-based RTSwith all the three state-of-the-art

RTS tools evaluated in [70]: Clover [55], Ekstazi [27], and STARTS [45].

Clover is developed by industry, while Ekstazi and STARTS are de-

veloped by researchers. We run DefectsEP on the four tools on

all 151 subjects, comparing their numbers of safety violations and

numbers of selected tests (for precision).

4.3.2 Results. Table 3 shows the results of the comparison. The

numbers of safety violations are shown on the ł# Safety Violationsž

row in Table 3, while the percentage of the selected test methods are

measured on average over all the subjects of a project. For example,

on project commons-lang [43] (LANG in the table), Clover selects

10.4% tests on average over bugs 28-53; on all the subjects, Clover

has 16 safety violations in total.

According to the results, our fact-based RTS is the only tool

having no safety violations. Both Ekstazi and STARTS have one

violation and Clover has 16 violations.

For precision, the results indicate that our fact-based RTS has

similar precision as STARTS, though it is less precise than Ekstazi

and Clover. This is expected, because Ekstazi and Clover perform

test selection based on dynamic analysis. Using runtime informa-

tion, they can further refine their dependency analysis by reducing

the set of code entities that are not covered by tests. Still, our fact-

based RTS has comparable precision as STARTS, a state-of-the-art

static RTS tool. This further demonstrates the effectiveness and

applicability of our approach.

Most facts used by our RTS technique are pre-computed and

shared among different tasks (e.g., case studies in Sec. 4.1), including

inter-versions facts representing atomic changes and intra-version

facts depicting static dependencies between program entities. This

is another example for the benefit of reusing facts across analyses.

Answer to RQ3: On the 151 subjects of DefectsEP, our fact-

based RTS technique outperforms all other state-of-the-art

RTS tools in safety, and obtains similar precision as STARTS,

the most recent static RTS tool. The experiment results con-

firm the applicability of our fact-based RTS tool and the effec-

tiveness of cross-analysis fact reusing.

4.4 Experiment: Lifting Enabled Reusing

In this experiment, we evaluate time and space savings brought by

lifting enabled analysis reusing. For this purpose, we conducted a

one-call-site heap-sensitive pointer analysis on Java projects using

Doop [9]. We used six out of the eight projects in Table 2 as the

subjects. Maven and Flume were excluded because they contain

multiple modules, currently not supported by our tooling. For each

Table 4: Time and space savings brought by analysis lifting.

Project
Before Lifting After Lifting

𝑇 (ms) 𝑆 (MB) 𝑇 ′ (ms) Δ𝑇 𝑆′ (MB) Δ𝑆

CSV 49129 40.26 5287 89.65% 4.88 87.88%

IO 53752 360.92 7085 86.82% 25.87 92.83%

CONFIG 91421 887.32 15751 82.77% 81.10 90.86%

COMPRESS 48581 486.84 11554 76.28% 81.51 83.26%

LANG 72892 614.19 11641 84.03% 75.98 87.63%

NET 60736 313.62 8750 85.59% 41.62 86.73%

project, ten versions before the End version were used and the same

analysis was conducted with two different approaches. Without

lifting, Doop was repeatedly ran on each version and the results

were collected. With lifting, a modified version of Doop was first

invoked on each version with the stop-at-facts mode (i.e., sub-task

𝑇𝑀1
in Fig. 9) so that version annotated facts were generated, which

were then consolidated in Diffbase. During the consolidation pro-

cess, duplicated facts were removed and each fact was annotated

with a set of version labels. Finally, Doop was invoked again in the

start-after-factsmode, which consumes the consolidated differential

facts and generates the results following Algorithm 1 (sub-tasks𝑇𝐴
and 𝑇𝑀2

in Fig. 9).

Table 4 shows the results of the experiments. The project names,

time taken (in milliseconds), and space taken for storing the facts (in

MBs), before and after the analysis lifting, are listed in the columns.

Columns ł𝑇 ž and ł𝑇 ′ž list the time costs, while Columns ł𝑆ž and

ł𝑆 ′ž list the space usage. 𝑇 ′ includes the time spent on merging,

which shows that the time gain brought by reusing outweighs the

overhead of lifting computation. The percentage reductions are

listed in Columns łΔ𝑇 ž and łΔ𝑆ž, respectively. For most projects,

lifting introduces about 80% savings on both time and space.

Answer to RQ4: Analysis lifting powered by differential facts

brings significant savings (more than 80% reduction in aver-

age) in both space and time through the reusing of intermedi-

ate analysis results.

4.5 Threats to Validity

Subjects used in our evaluation may not be representative. To miti-

gate this threat, we used the published dataset from prior research

on both history slicing and regression test selection; these subjects

were taken from large open-source projects covering diverse do-

mains. We ran all the experiments on a single machine, and our

findings related to execution time might differ on another machine.

During the implementation of our tools, we have used several ma-

chines and observed similar trends on these machines. The observed

results in our evaluation may be affected by errors in implemen-

tations. Our fact extractors, analysis scripts, as well as scripts for

running the experiments, may contain bugs. Two of the authors

worked closely on the implementation of the tool and frequently

reviewed code together. We have also checked for various outliers

in our results, which helped in discovering and fixing several bugs.

5 RELATED WORK

Our work intersects with a few research areas and is mostly related

to program fact extraction and software evolution management.

512



DIFFBASE: A Differential Factbase for Effective Software Evolution Management ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Fact Extraction. Fact extractors are custom, human-defined ana-

lyzers that automatically scan structured software artifacts to pull

out pertinent details to be included in a resultant factbase. The idea

of reverse engineering programs and representing relevant infor-

mation as facts is not new. The existing work on fact extraction can

be broadly categorized into the intra-version and inter-version ones.

Intra-version fact extraction focuses on a single version of the

program artifacts. Fact extractors for different programming lan-

guages and platforms have been built, including Javax [2] for Java,

Cppx [1] and ClangEx [3] for C/C++, and ASX [18] for assembler,

objects, dynamic libraries and executables. We have developed our

own fact extractor for Java and modified ClangEx for C/C++ to

generate intra-version facts of the format compatible with the rest

of the differential facts. There are also many downstream analyses

performed on the intra-version facts for architecture understand-

ing [7], visualization and redocumentation [39].

Inter-version fact extraction relies on sophisticated structural

differencing [8, 12, 21] and code change classification [23, 24, 30]

algorithms. The former is used to compute an optimal sequence of

atomic edit operations that can transform one AST into another,

and the latter is used to classify atomic changes according to their

change types. Examples of AST differencing algorithm include

ChangeDistiller [24] and GumTree [21]. They both use individual

statements as the smallest AST nodes and categorizes source code

changes into elementary tree edit operations, for instance, insert,

delete, move and update. ChangeDistiller only works on Java while

GumTree works on a number of different languages. GumTree con-

verts a source file into a language-agnostic tree format and is able

to export the tree differences into various formats. We built our

inter-version fact extractor based on GumTree by implementing a

specialized tree exporter to the TA format. We use canonical identi-

fiers for entity nodes to ensure the proper linkages between inter-

and intra-version facts. The key difference of our approach is the

emphasis on the reusing of facts, which was not explicitly estab-

lished in the previous work. We also retain versioning information

as edge attributes to allow commit-level history-related analyses.

Inter-version facts can go beyond structural differences. Kim et

al. [40, 41] proposed to infer rules from systematic structural differ-

ences between versions, which be viewed as logical summarizations

of changes. Le and Pattison [44] introduced the Multiversion Inter-

procedural Control Flow Graphs (MVICFG) to integrate and compare

control flow of multiple versions of programs. Albeit their differ-

ences in the representations chosen, the results from these analyses

can all be encoded as the lower-level differential facts and consumed

by other downstream analyses.

Evolution Management. There is a large body of work on ana-

lyzing and understanding software histories. The basic research

goals are retrieving useful information from change histories to

help understand development practices [11, 50, 51, 57], localize

bugs [68, 69] and features [48], and support predictions [31, 74].

The problem of classifying changes and identifying change im-

pacts widely present in many evolution management tasks. Brito et

al. [10] proposed a tool, named APIDiff, to identify API breaking

and non-breaking changes between two versions of a Java library.

APIDiff defines rules to classify changes based on their types, e.g.,

the breaking types (e.g., removal) and non-breaking types (e.g.,

addition). Yokomori et al. [66] studied the evolution of an applica-

tion and its underlying libraries or frameworks, by analyzing the

evolution of their use relationship. They use component ranking

to identify core components of a library, and analyze the impact

of a change based on the use relationship between the changed

component and the core components. Gyori et al. [28] evaluated

regression test selection (RTS) opportunities in the Maven Central

ecosystem by changing a library and running RTS techniques on

all its transitive clients. In the case studies presented in Sec. 4.1.2,

we performed similar change impact analysis between the library

changes and the client code with the help of differential facts. Our

analysis can easily be ported to support other tasks with minimal

modifications to the query scripts.

Incremental Datalog-Based Analysis. Incremental code queries

based on Datalog have been used for analysis of evolving software

systems. Hajiyev et al. [29] implemented CodeQuest, a source code

querying tool for program understanding, which incrementally

updates its database when program changes occur. They compiled

Datalog to SQL to improve scalability and achieve incremental

updates by only re-compiling changed source code and replac-

ing affected facts. Eichberg et al. [19] created a domain-specific

language based on Datalog for continuously checking structural

dependencies between program entities. While we adopted similar

incremental strategies for extracting facts, our approach enables

querying across multiple versions as well as analysis lifting, through

customized storage and query engines for differential facts.

Analysis Lifting. Various attempts on optimizing analysis with

declarative methods has been made. Shahin et al. [59] lifted a Dat-

alog engine so that it can analyze all the product variants of a

software product line at once. The way we represent differential

facts enables lifting in a similar style, which is otherwise not possi-

ble without the feature models available in product lines. However,

the effectiveness of lifting on version history has not been studied

before. Visser et al. [63] proposed a results caching mechanism to

reuse SMT query results across multiple runs and analyses. Their

work is specific to SMT constraints and does not answer the ques-

tion on how to uniformly represent knowledge about software

development artifacts, especially inter-version facts.

6 CONCLUSION

In this paper, we proposed Diffbase, a simple yet powerful repre-

sentation of pertinent information in evolving software artifacts.

The inter-version changes are treated as first-class objects and facil-

itate effective cross-version fact querying. The resultant differential

factbase allows efficient storage, querying, and manipulation of

facts. We demonstrated the applications of Diffbase in supporting

evolution management tasks such as history slicing and regression

test selection. The experimental results highlight the benefits of our

approach in terms of sharing and reusing of intermediate analysis

results as well as cross-language/platform interoperability.
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